BWT & FM-index

All slides in this lecture not marked with “*” are courtesy of Ben
Langmead (www.langmead-lab.org/teaching-materials).

http://www.langmead-lab.org/teaching-materials

Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression

Sabaaba
aSabaab
aabaSab
abaaba$ abaSaba abba$aa
r " abaaba$ BWT(T)
Oty baSabaa
Ong baaba $ 3 Last column
Sort Burrows-Wheeler

Matrix

How is it useful for compression? How is it reversible? How is it an index?

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

def rotations(t):
""" Return list of rotations of input string t """
tt=1t * 2
return [tt[i:i+len(t)] for i in xrange(0, len(t))]

def bwm(t):

" Return lexicographically sorted list of t’s rotations """

return sorted(rotations(t))

def bwtViaBwm(t):
""" Given T, returns BWT(T) by way of the BWM """
return ''.join(map(lambda x: x[-1], bwm(t)))

>>> bwtViaBwm("Tomorrow and tomorrow and tomorrow$")

'wdwwdd__ nnoooaattTmmmrrrrrrooo_ ooo'

Make list of all rotations

Sort them

Take last column

>>> bwtViaBwm("It was the best of times_ it was_the worst of times$")

's$esttssfftteww hhmmbootttt ii woeeaaressli

>>> bwtViaBwm('in_the jingle jangle morning I1ll come following you$')

'u gleeeengj mlhl nnnnt$nwj lggIolo iiiiarfcmylo oo

Burrows-Wheeler Transform

final
char sorted rotations

(L)

to decompress. It achieves compression
to perform only comparisons to a depth

transformation} This section describes
transformation} We use the example and
treats the right-hand side as the most

tree for each 16 kbyte input block, enc
tree in the output stream, then encodes
turn, set $L[i]$ to be the

turn, set $R[i]$ to the

unusual data. Like the algorithm of Man
use a single set of probabilities table
using the positions of the suffixes in

value at a given point in the vector $R
we present modifications that improve t
when the block size is quite large. Ho
which codes that have not been seen in

with ch appear in the {\em same order
with chs. In our exam
with Huffman or arithmetic coding. Bri
with figures given by Bell \cite{bell}.

o

Characters of the BWT are sorted
by their right-context

This lends additional structure to
BWT(T), tending to make it more
compressible

O O F-F- k- 0O ® - O » O - - ® O O O O
=l - B - - - - - B B - - = - R R R e R R

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

BWM bears a resemblance to the suffix array

Sabaaba 6|$
aSabaab 5(la$
aabaS$Sab 2laabas$
abaSaba 3laba$
abaaba$ Olabaaba$
baSabaa 41bas
baaba$$a 1lbaaba$
BWM(T) SA(T)

Sort order is the same whether rows are rotations or suffixes

Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

TISA[i] —1] if SA[i] > 0

BWTli] = { 3 if SAi] = 0

“BWT = characters just to the left of the suffixes in the suffix array”

Sabaaba JE
aSabaab 5(la$
aabaS$Sab 2laabas$
abaSaba 3laba$
abaabas$ Olabaaba$
baSabaa 41bas
baaba$a l1lbaaba$

BWM(T) SA(T)

Burrows-Wheeler Transform

How to reverse the BWT?

?
e Sabaaba -
a$abaab
v aabasSab
abaabas$ abaSaba abbaS$aa
T 4 abaabas$ BWT(T)
s baSabaa
N b aa b 3 S 3 Last column
Sort Burrows-Wheeler
Matrix

BWM has a key property called the LF Mapping...

Burrows-Wheeler Transform: T-ranking

Give each character in T a rank, equal to # times the character occurred
previously in T. Call this the T-ranking.

aoboaiaxbiaz$

Now let’s re-write the BWM including ranks...

Note: we do not actually write this information in the text / BWM, we
Are simply including it here to help us track “which” occurrences of each
character in the BWM correspond to the occurrences in the text.

Burrows-Wheeler Transform

F L
BWM with T-ranking: -
as
di
a> ai
do
d>
do

Look at first and last columns, called Fand L

And look at just the aAs

as occur in the same orderin Fand L. As we look down columns, in both

cases we see: d3,dil1,d?2, Ao

Burrows-Wheeler Transform

F
BWM with T-ranking:

Same with bs: b1, bo

Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression

Sabaaba
aSabaab
aabaSab
abaaba$ abaSaba abba$aa
r " abaaba$ BWT(T)
Oty baSabaa
Ong baaba $ 3 Last column
Sort Burrows-Wheeler

Matrix

How is it useful for compression? How is it reversible? How is it an index?

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform: LF Mapping

F L

BWM with T-ranking: $ ao bo d] 42 b1 a3
as $ ao bo a1 a2 b
aiaxbiaz $ ao bo
a> biasz $ ao bo a;
aoboaiazbiaz $
bi1az $ ao bo a1 a:
boaiaxbiaz $ ao

LF Mapping: The ith occurrence of a character c in L and the ith occurrence of ¢
in F correspond to the same occurrencein T

However we rank occurrences of ¢, ranks appear in the same orderin Fand L

Burrows-Wheeler Transform: LF Mapping

Why does the LF Mapping hold?

Why are these

as in this order

relative to
each other?

S abaabas

biaSabaa
boaabas$ a

——

They're sorted by
right-context

$ abaabla:

as Sabaa b1\Whyarethese
a1 a4 b a $ a bo as in this order

acbas$a b“a1 « relative to
acbaaba S/eachother?
boaaba$jao

R —

They're sorted by
right-context

Occurrences of cin F are sorted by right-context. Same for L!

Whatever ranking we give to characters in T, rank orders in F and L will match

Burrows-Wheeler Transform: LF Mapping

BWM with T-ranking:

F L

S ao bo ai az by as
az $ ao bo a1 a2 b
a;1az by as $ ao bo
a>bias S ao bo a;
aoboaiabiaz $
b as: $ ao bo a1 a:
boaiabiaz $ ao

We'd like a different ranking so that for a given character, ranks are in
ascending order as we look down the F / L columns...

Burrows-Wheeler Transform: LF Mapping

BWM with B-ranking:

F L

S do

do bo

a1l b1

a> ai Ascending rank
ds3 S

bo d>2

b+ ds

F now has very simple structure: a $, a block of @s with ascending ranks, a
block of bs with ascending ranks

Burrows-Wheeler Transform

F [
S do
d0 bo

a1 b «<— Which BWM row begins with b1?

a> ai Skip row starting with $ (1 row)
$ Skip rows starting with a (4 rows)
Skip row starting with bo (1 row)

Answer: row 6

Burrows-Wheeler Transform

Say T has 300 As, 400 Cs, 250 Gsand 700 Tsand $ <A <C<G<T

Which BWM row (0-based) begins with G100? (Ranks are B-ranks.)

Skip row starting with $ (1 row)

Skip rows starting with A (300 rows)

Skip rows starting with € (400 rows)

Skip first 100 rows starting with G (100 rows)

Answer:row 1 + 300 +400 + 100 = row 801

Burrows-Wheeler Transform: reversing

Reverse BWT(T) starting at right-hand-side of T and moving left

Start in first row. F must have S. L contains F [

character just prior to $: ao — 56— 52
0

/

ao: LF Mapping says this is same occurrence of a ao— bo
as firstain F. Jump to row beginning with ag. L

contains character just prior to ao: bo.

Repeat for bo, get a2

Repeat for a2, get a1

Repeat for a1, get b1
Repeat for b1, get a3

Repeat for @3, get $, done Reverse of chars we visited=az bi1atazboao$=T

Burrows-Wheeler Transform: reversing

Another way to visualize reversing BWT(T):

FooL F L F L F L F L F L
— $—>ao\

ao—>b

b1—>a3

T: asbratazboao$

as-»$

Burrows-Wheeler Transform: reversing

>>> reverseBwt("w$wwdd nnoooaattTmmmrrrrrrooo o0oo")
'Tomorrow_and_tomorrow _and_ tomorrow$'

>>> reverseBwt("s$esttssfftteww hhmmbootttt ii woeeaaressIi ")
'It was the best of times it was the worst of times$'

>>> reverseBwt("u gleeeengj mlhl nnnnt$nwj 1gglolo iiiiarfcmylo oo ")
'in_the jingle jangle morning I11 come following you$'

def reverseBwt(bw):
o . ' Make T from BWT(T) '''
ranks list is m integers » ranks, tots = rankBwt(bw)
/ first = firstCol(tots)
Iong! We'll fix later. rowi = @ # start in first row
t ='$" # start with rightmost character
while bw[rowi] != '$"':
c = bw[rowi]
t=c+ t # prepend to answer
jump to row that starts with ¢ of same rank
rowi = first[c][0] + ranks[rowi]
return t

Burrows-Wheeler Transform

We've seen how BWT is useful for compression:

Sorts characters by right-context, making a more compressible string

And how it’s reversible:

Repeated applications of LF Mapping, recreating T from right to left

How is it used as an index?

FM Index

FM Index: an index combining the BWT with a few small auxilliary

data structures

"FM” supposedly stands for “Full-text Minute-space.”
(But inventors are named Ferragina and Manzini)

Core of index consists of F and L from BWM:

F can be represented very simply
(1 integer per alphabet character)

And L is compressible

Potentially very space-economicall

Paolo Ferragina, and Giovanni Manzini. "Opportunistic data
structures with applications." Foundations of Computer Science,
2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

F L
S a
a b
a b
a a
a S
b a
b a
—

Not stored in index

FM Index: querying

Though BWM is related to suffix array, we can’t query it the same way

S a 6|$

a b 5/la$

a b 2laabas

a a 3laba$

a S Olabaaba$

b a 4lbas

b a l1lbaaba$
—

N\

We don't have these columns; binary search isn’t possible

FM Index: querying

Look for range of rows of BWM(T) with P as prefix

Do this for P’s shortest suffix, then extend to successively longer
suffixes until range becomes empty or we've exhausted P

P=aba

F L

S as
Easy to find all the ao b
rows beginning with | |a; bo
a, thanks to F's a:z ai
simple structure as S

bo d>

FM Index: querying

We have rows beginning with @, now we seek rows beginning with ba

P=aba P=aba
F L F L
3 a0 S ao
ao bo do bo
ai b1 <« Look at those rows in L. ai b1
a2 ai bo, b1 are bs occuring just to left. a> ai
as S as S
bo a2 Use LF Mapping. Let new bo a>
b- as range delimit those bs T b- as

Now we have the rows with prefix ba

FM Index: querying

We have rows beginning with ba, now we seek rows beginning with aba

P=aba p=aba
F L F [
S ao S ao
do bo do bo
ai b1 a1l b1
a> ail a> di
Use LF Mapping —
Do 9 . | < @32, @3 occur just to left. bo a
b a3 b+ as

Now we have the rows with prefix aba

FM Index: querying

Now we have the same range, [3, 5), we would

P=aba have got from querying suffix array
F L
S ao 6|(S
ao bo 5/a$
_a b |2laabas
az a abal$
3,5 3,5
[)__as S |)__abaabaS
bo as 4bas
Where are b as llbaaba$
these?

Unlike suffix array, we don't immediately know where the
matches areinT...

FM Index: querying

When P does not occur in T, we will eventually fail to find the next character
in L:

P=bba
F L
S do
do bo
di b1
d> ai
a3 S
Rows with ba preﬁxI Do 2 }— No bs!
b d3

FM Index: querying

If we scan characters in the last column, that can be very slow, O(m)

P=aba
F L
S as
do b1
a b
1 0 Scan, looking for bs
a> di
ds3 $
bo ")

FM Index: lingering issues

(2) Storing ranks takes too much space

def reverseBwt(bw):

(1) Scanning for preceding """ Make T from BWT(T) """
ranks, tots = rankBwt(bw)
CharaCter iS SIOW /first = firstCol(tots)
m rowi = ©
: t = "$"
$ do |nteger5 while bw[rowi] != '$':
c = bw[rowi]
do l)() t=c+t
rowli = first[c][0@] + ranks[rowi]
ai b1 O(m) return t
d>2 a1 | scan
a: $ (3) Need way to find where matches
b occurin [:
0 a>
b1 as S ao
do bo
ai b
Where? |92 a
as S
bo d>

FM Index: fast rank calculations

F L
S do
Is there an O(1) way to do EO Occ(c, k) = # of of cin the first k
a1 1
determine which bs a- a; i‘:‘raizrs of BWT(S), aka the LF
precede the as in our range? (a3 $ PRINg.
bo d>2
b1 a3

Tally — also referred to as Occ(c, k)

F L ab

$ a 110 |«—

alb 111 .
ldea: pre-calculate # as, alb 112 ;/Ve I:;?;nb:iint?\ils):an .
bs in L up to every row: aa 2|2 PP 7

als 22|

b a 3[2

b a 412 O(1) time, but requires

m x| X | integers

FM Index: fast rank calculations

Another idea: pre-calculate # as, bs in L up to some rows, e.g. every 5t row.
Call pre-calculated rows checkpoints.

Tally
ab

1[0 |«— Lookup here succeeds as usual

<— Qops: not a checkpoint

3 | 2 |[«— But there’s one nearby

QU O NN T O —

C T O O 9 W T

To resolve a lookup for character ¢ in non-checkpoint row, scan along L until
we get to nearest checkpoint. Use tally at the checkpoint, adjusted for # of cs
we saw along the way.

FM Index: fast rank calculations

What's my rank?

482+ 2-1=483

/! LN
Checkpoint tally -> rank
as along the way

What's my rank?
439-2-1=436

Assuming checkpoints are spaced O(1)
distance apart, lookups are O(1)

O O T T YO 9 OO0 0O Y Q9 9 9 OO QY e

Tally
a b
482 | 432
488 | 439

FM Index: fast rank calculations

This can also be accomplished using bit-vector rank operations. We store one
bit-vector for each character of 2, placing a 1 where this character occurs and a
O everywhere else:

Tally the operation rank(x, i) returns the

£ a b tqtal nu.mbe.r of 1’§ in a bit—v_ec;tor up to (and
including) index i. rank(x,i) is a constant-

S a time operation

alb

a|b rank(a,3) = 2

d| d

als$ rank(a,5) =3

b a rank(b,5) = 2

b a

To resolve the rank for a given character ¢ at a given index I, we simply issue a rank(c,i)
query. This is a practically-tast constant-time operation, but we need to
keep around 2 bit-vectors, each of o(m) bits.

FM Index: a few problems

Solved! At the expense of adding checkpoints (O(m) integers) to index.

(1) = | (2) Ranking takes too much space
$ aO def reverseBwt(bw):
'" Make T from BWT(T) """
ranks, tots = rankBwt(bw)
aO bO /first = firstCol(tots)
I 1 rowli = 0
ai b . This scanll(s mintegers toi
while bw[rowi] != '$":
a2 a1 O(m) Wor c = bw[rowi]
t=c+ t
a3 $ rowi = first[c][@] + ranks[rowi]
bO a2 return t
b- as

With checkpoints, we greatly reduce

#int ded f k
With checkpoints it’s O(1) 'NTEGErs heeded Tor ranks

But it’s still O(m) space - there’s literature
on how to improve this space bound

FM Index: a few problems

Not yet solved:

(3) Needaway to find where

these occurrences are in T:

If suffix array were part of index, we
could simply look up the offsets

F

TV 9 9 n

L
a
b
b

——a—>

rba$

Offsets: 0, 3

SA

—= | K| O|IWIN]IUI] O

S
as
aabas$
abas$
abaaba$
ba$
baaba$

S ao
do bo
di b1
a> ai
as S
bo a>
b1 ds

But SA requires
m integers

FM Index: resolving offsets
ldea: store some, but not all, entries of the suffix array

SA

Co o ™

S—s=—a—X

Q
n

crcr'mmmm
(@)

Lookup for row 4 succeeds - we kept that entry of SA

Lookup for row 3 fails - we discarded that entry of SA

FM Index: resolving offsets

But LF Mapping tells us that the a at the end of row 3 corresponds to...

..the a at the begining of row 2

F SA

SO 9 Y Y O W»n
mmmg{lc‘mh
ND

And row 2 has a suffix array value = 2

So row 3 has suffix array value = 3 = 2 (row 2's SA val) + 1 (# steps to row 2)

If saved SA values are O(1) positions apartin T, resolving offset is O(1) time

FM Index: problems solved

At the expense of adding some SA values (O(m) integers) to index
Call this the “SA sample”

Solved!

(3) Need a way to find where these
occurrences arein [:

S do
a0 bo
ai b1
a2 ai
das S
bo d>2
b1 as

With SA sample we can do this in
O(1) time per occurrence

FM Index: small memory footprint

Components of the FM Index:

First column (F): ~ | X | integers
Last column (L): m characters
SA sample: m - a integers, where a is fraction of rows kept
Checkpoints: m x| 2 |- bintegers, where b is fraction of

rows checkpointed

Example: DNA alphabet (2 bits per nucleotide), T= human genome,
a=1/32,b=1/128

First column (F): 16 bytes
Last column (L): 2 bits * 3 billion chars =750 MB

SA sample: 3 billion chars * 4 bytes/char /32 = ~ 400 MB
Checkpoints: .3 billion * 4 bytes/char * 4 char / 120 = ~400MB

Total ~1.5 GB

Computing BWT in O(n) time

* Easy O(n? log n)-time algorithm to compute the BWT (create and
sort the BWT matrix explicitly).

 Several direct O(n)-time algorithms for BWT.
These are space efficient. (Bowtie e.g. uses [1])

e Also can use suffix arrays or trees:

Compute the suffix array, use correspondence between suffix
array and BWT to output the BWT.

O(n)-time and O(n)-space, but the constants are large.

[1] Kédrkkédinen, Juha. "Fast BWT in small space by blockwise suffix sorting." Theoretical
Computer Science 387.3 (2007): 249-257.

*slide courtesy of Carl Kingsford

Bonus material (not on
exams ... but cool!)

Actual FM-Index Built on Compressed String

Ferragina, Paolo, and Giovanni Manzini. "Opportunistic data structures with applications."
Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

Data structure has “space occupancy that is a function of the entropy of the underlying data
set”

Stores text T[1,u] in O(Hk(T)) + o(1) bits for k > 0 where Hk(T) is the kith order empirical entropy of
the text — sub-linear for a compressible string

Theorem 1 Let Z denote the output of the algorithm
BW_RLX on input T'[1,u). The number of occurrences of a
pattern P[1, p] in T[1,u) can be computed in O(p) time on
a RAM. The space occupancy is |Z| + O(l T loglog u)
bits in the worst case. o

Theorem 2 A text T'[1,u] can be preprocessed in O(u)
time so that all the occ occurrences of a pattern P[1,p| in
T can be listed in O(p + occlog® u) time on a RAM. The

space occupancy is bounded by 5Hy (T') + O('2E128%) pijr

log u

per input symbol in the worst case, for any fixedk > 0. W

Theorem 3 A text T[1,u] can be indexed so that all the
occ occurrences of a pattern P[1,p| in T can be listed in
O(p + occlog® u) time on a RAM. The space occupancy

is O(Hx(T) + -%ﬁ'—?sul) bits per input symbol in the worst

case, for any fixed Ic > 0.]

Compressing BWT Strings

Lots of possible compression schemes will benefit from preprocessing with
BWT (since it tends to group runs of the same letters together).

One good scheme proposed by Ferragina & Manzini:

replace runs of Os with
the count of Os

l
PrefixCode(rle(MTF(BWT(S))))

|

Huffman code that
uses more bits for rare
symbols

*slide courtesy of Carl Kingsford

Move-To-Front Coding

To encode a letter, use its index in the current list, and then move it to the front of the list.

> doSoodwg
$dgow 1
d$gow 13

List with all
letters from the od $gW 132

allowed alphabet $od W 1321
ofdgw 13210
oddgw 132102
do¥gw 1321024
wdodg 13210244

Benefits:
* Runs of the same letter will lead to runs of Os.

* Common letters get small numbers, while rare letters get big numbers.
*slide courtesy of Carl Kingsford

Move-To-Front Decoding

To encode a letter, use its index in the current list, and then move it to the front of the list.

2

$dgow 13210244 d
PR d$gow 13210244 do

letters from the — Od$gW 13210244 dosS

allowed alphabet $OC| W 13210244 do $ o
o$dgw 132310244 do$oo
oddgw 132109244 doSoog
do$gw 13210244 doSoogw
wdo$g 13210244 doSoogwg

Benefits:
* Runs of the same letter will lead to runs of Os.

* Common letters get small numbers, while rare letters get big numbers.
*slide courtesy of Carl Kingsford

Computing Occ in Compressed String

Break BWT(S) into blocks of length L (we will decide on a value for L later):

BWT(S)

\ BT \

PrefixCode(rle(MTF(BWT(BT))))

BZ \
Occ(c, p) = # of “c”
up thru p

’ |

B2 H BZ B2 | . ||

.
.
.
.
.
.
.
*
.
.
.
.
.
.
.
*
*
*
.
.
.
.
.
.
.
*
.
.
.
.
.
.
.
.
R
. 4
- *
. *
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
R
.

Assumes every run of Os is contained in a block [just for ease of explanation].

We will store some extra info for each block (and some groups of blocks) to
compute Occ(c, p) quickly.

*slide courtesy of Carl Kingsford

Extra Info to Compute Occ

u = compressed length
Choose L = O(log u)

u/L blocks, each array is |2 |log L space block: store |2 |-long array giving #
— of occurrences of each character up
7 log L = % log log u total space. thru and including this block since the

end of the last super block.

block

| B2 [BL || B |~ | A L

|2 . | 2
superblock

superblock: store |2 |-long

array giving # of occurrences

of each character up thru and
including this superblock

u/L2 superblocks, each array is |> |log u long

U _ U
= (Tog 0)2 logu = og total space.

*slide courtesy of Carl Kingsford

Extra Info to Compute Occ

u = compressed length
Choose L = O(log u)

‘ BZ, H

block

BZ, ||BZ; || - | | | | ‘

1
—

= - |2 T §
superblock
Occ(c, p) = # of “c” up thru p:

sum value at last superblock, value at
end of previous block, but then need
to handle this block.

Store an array: M[c, k, BZ;, MTF;] = # of occurrences of ¢ through the kth letter of a
block of type (BZ;, MTF)).

of possible

oIt patterns of length log(u)

A

Size: O(|2|L2L[2]) = O(L2Y) = O(uclog u) for c < | (since the string is compressed)

*slide courtesy of Carl Kingsford

